转载

redis使用@Cacheable等注解为接口添加缓存

缓存处理方式应该是

  1. 先从缓存中拿数据,如果有,直接返回。
  2. 如果拿到的为空,则数据库查询,然后将查询结果存到缓存中。

由此实现方式应该如下:

 private String baseKey = "category";
 
    public CmfCategories selectByPrimaryKey(Long id) {
        //1. 先从缓存中取
        CmfCategories cmfCategories = redisUtils.get(baseKey + id, CmfCategories.class);
        if (cmfCategories == null) {    //如果取值为空
            //2. 从数据中查询
            cmfCategories = cmfCategoriesMapper.selectByPrimaryKey(id);
            //3. 将查询结果存入缓存
            redisUtils.set(baseKey + id, cmfCategories, DEFAULT_EXPIRE * 7);
        }
        return cmfCategories;
    }


这种方式是没错的,但就是实现起来,每个接口都要做一遍重复的操作,下面演示一种简洁的使用注解实现方式:

  @Cacheable(value = "newsCategory", key = "'newsCategory:'+#id", unless = "#result==null")
    public CmfCategories selectByPrimaryKey(Long id) {
        return cmfCategoriesMapper.selectByPrimaryKey(id);
    }


明显简单多了,而且**对代码无侵入**!

实现步骤

1、添加maven依赖


<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-cache</artifactId>
</dependency>

 

2、添加配置


 
/**
 * Redis缓存配置。
 */
@Configuration
@EnableCaching
public class RedisCacheConfig {
 
    @Autowired
    private RedisConnectionFactory factory;
 
    @Bean
    public CacheManager cacheManager() {
        RedisCacheManager redisCacheManager = new RedisCacheManager(redisTemplate());
        // 默认缓存一天 86400秒
        redisCacheManager.setDefaultExpiration(86400L);
        return redisCacheManager;
    }
 
    @Bean
    public RedisTemplate<String, Object> redisTemplate() {
        RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();
        redisTemplate.setConnectionFactory(factory);
        // 字符串Key序列化
        StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();
        redisTemplate.setKeySerializer(stringRedisSerializer);
        redisTemplate.setHashKeySerializer(stringRedisSerializer);
        // 对象值序列化
        ObjectRedisSerializer objectRedisSerializer = new ObjectRedisSerializer();
        redisTemplate.setValueSerializer(objectRedisSerializer);
        redisTemplate.setHashValueSerializer(objectRedisSerializer);
        return redisTemplate;
    }
 
 
 
}


3、具体使用


在需要缓存的接口上添加注解

@Cacheable(value = "newsCategory", key = "'newsCategory:'+#id", unless = "#result==null")
    public CmfCategories selectByPrimaryKey(Long id) {
        return cmfCategoriesMapper.selectByPrimaryKey(id);
    }


当被缓存的数据被更新的时候,可以使用@CacheEvict来清除缓存,则可以保证缓存的数据是最新的

@CacheEvict(value = "User", key = "'User:'+#userParam.userId", condition = "#userParam!=null")
    public long setUserBasicInfo(UserBasicInfo userParam, String token) {
        //do something
    }


简单讲解

    参考链接

    缓存数据

    对于缓存的操作,主要有:@Cacheable、@CachePut、@CacheEvict。

  • @Cacheable

    Spring 在执行 @Cacheable 标注的方法前先查看缓存中是否有数据,如果有数据,则直接返回缓存数据;若没有数据,执行该方法并将方法返回值放进缓存。 参数: value缓存名、 key缓存键值、 condition满足缓存条件、unless否决缓存条件

@Cacheable(value = "user", key = "#id")  
public User findById(final Long id) {  
    System.out.println("cache miss, invoke find by id, id:" + id);  
    for (User user : users) {  
        if (user.getId().equals(id)) {  
            return user;  
        }  
    }  
    return null;  
} 

 

  • @CachePut

    和 @Cacheable 类似,但会把方法的返回值放入缓存中, 主要用于数据新增和修改方法。


@CachePut(value = "user", key = "#user.id")  
public User save(User user) {  
    users.add(user);  
    return user;  
} 

 

  • @CacheEvict

方法执行成功后会从缓存中移除相应数据。 参数: value缓存名、 key缓存键值、 condition满足缓存条件、 unless否决缓存条件、 allEntries是否移除所有数据(设置为true时会移除所有缓存)


@CacheEvict(value = "user", key = "#user.id") // 移除指定key的数据  
public User delete(User user) {  
    users.remove(user);  
    return user;  
} 
 
@CacheEvict(value = "user", allEntries = true) // 移除所有数据  
public void deleteAll() {  
    users.clear();  
}

原文链接:https://blog.csdn.net/sinstar1/article/details/82151249

文章最后发布于: 2019-03-21 14:12:10
展开阅读全文
0 个人打赏
私信求帮助

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览